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ABSTRACT
Data mining of course enrollment and course description
records has soared as institutions of higher education be-
gin tapping into the value of these data for academic and
internal research purposes. This has led to a more than
doubling of papers on course prediction tasks every year.
The papers often center around a single prediction task and
introduce a single novel modeling approach utilizing one or
two data sources. In this paper, we provide the most com-
prehensive evaluation to date of data sources, models, and
their performance on downstream prediction tasks. We sep-
arately incorporate syllabus, catalog description, and enroll-
ment history data to represent courses using graph embed-
ding, course2vec (i.e., skip-gram), and classic bag-of-words
models. We evaluate these representations on the tasks
of predicting course prerequisites, credit equivalencies, stu-
dent next semester enrollments, and student course grades.
Most notably, our results show that syllabi bag-of-words
representations performed better than course descriptions
in predicting prerequisite relationships, though enrollment-
based graph embeddings performed substantially better still.
Course descriptions provided the highest single representa-
tion accuracy in predicting course similarity, with descrip-
tions, syllabi, and course2vec combined representations pro-
viding the highest ensembled accuracy on this task.

Keywords
Higher education, course recommendation, course2vec, pre-
requisites, enrollment histories, syllabus, network embed-
ding, grade prediction, institutional analytics.

1. INTRODUCTION
Data from institutions of higher education are quickly com-
ing into focus for educational data mining and learning an-
alytics communities as the utility of these data start to be-
come clear and attention begins to shift from the informal
learning context of free online courses to the higher stakes
context of degree granting institutions and their students.

Educational Data Mining (EDM) plays an important role
in the developing stages of methodological adaptation to a
domain by evaluating new sources of data for their utility
in existing models and tasks and updating the utility of ex-
isting data as models and tasks evolve. Recently, EDM has
seen a more than doubling year-to-year in papers focused on
prediction with large institutional enrollment sets from the
formal higher education context, with a single paper on the
topic in 2017 [38], two in 2018 [12, 6], and five in 2019 [29,
36, 19, 37, 16], though early pioneering work on predicting
academic outcomes date back to the first EDM conference
[39, 2].

In this paper, we summarize and evaluate this quickly de-
veloping domain across three dimensions: sources of insti-
tutional data, models for representing students and courses,
and the performance of the former two categories on institu-
tionally relevant prediction tasks. As academic researchers
and practitioners know, not all sources of data are always
available and different costs are associated with obtaining a
new source. Similarly, when it comes to modeling, different
personnel and computational costs are associated with ap-
plying models depending on their complexity and recency of
introduction. We provide the most comprehensive evalua-
tion to date of the performance of different combinations of
data and models on common institutional tasks emerging in
the literature so that the costs and benefits of each, in our
setting, can be quickly apprised. In addition to evaluating
previously introduced approaches and data, we introduce
large scale syllabus data as a novel source of information
about courses and a novel application of a nascent graph-
embedding approach for representing courses.

2. RELATED WORK
Contemporary approaches to data mining institutional data-
sets in higher education have distinguished themselves from
earlier drop-out detection work [18] in the use enrollment
data and adoption of representational methods that fac-
torize, embed, or otherwise vectorize courses into a space.
This began with [10] that used matrix factorization applied
to student enrollments and observed that the factorization
grouped courses and students in semantically meaningful
ways. Subsequent research also employed matrix factor-
ization for grade prediction tasks [38, 37]. Neural embed-
ding models followed, with the skip-gram neural network
model applied to sequences of course enrollments, an ap-
proach coined “Course2vec” [32]. The course embeddings
extracted from this model were found to be predictive of on-
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Table 1: Related work on institutional prediction tasks (columns) and sources of data used in the task (rows)
Grade prediction Enrollment prediction Prerequisite prediction Course similarity

Course grades [10, 15, 21, 38, 37, 16] [10, 3, 32, 36] [22, 11, 21, 16] [17, 25, 12, 29]
Enrollment histories [10, 15, 21, 38, 37, 16] [10, 3, 32, 36, 1] [22, 11, 21, 16] [17, 25, 31, 33, 29]
Major declarations [38, 21, 37] [32, 36] [21] [25]
Catalog descriptions [32] [26, 31, 33, 12, 29]

time graduation [25], course similarity within [33] and across
institutions [31], and of latent topics of courses [8]. Student
course selections have also been posed as a graph, treating
courses as nodes and student course selections as strength-
ening the edges between courses the more frequently they
share students in common [15, 16, 1]. The aforementioned
approaches all use student course selections, a collaborative
signal, to represent a course. Other approaches utilize con-
tent data of a course (e.g., catalog description) for represen-
tation and for downstream tasks such as course similarity
analysis [26, 31, 33, 12, 29] and enrollment prediction [32].
Several papers have collected course ratings for modeling
and recommendation [13, 12].

The majority of models in related works have been framed
as potentially contributing to a course recommendation sys-
tem, or already integrated into one. They commonly focused
on grade prediction [10, 15, 21, 38, 37, 16] as a necessary
first-step towards a preparation, or goal-based [21] recom-
mendation system that could aid students in preparing for
difficult courses. In a similar vein, prerequisite course in-
ference has been framed [22, 11, 21, 16] also as a potential
means to help guide students towards course taking paths
expected to be more successful than others [11, 30]. Table
1 summarizes this body of work in terms of the most com-
mon data sources used (i.e., course grades, enrollment histo-
ries, major declarations, and catalog descriptions) and most
common evaluation tasks (i.e., grade prediction, enrollment
prediction, prerequisite prediction, and course similarity) fo-
cused on in this paper.

3. DATA SOURCES
In this section, we will describe the three primary sources of
data utilized in this paper. First, we will describe the source
generally, followed by a paragraph detailing the particulars
of the dataset used in our offline evaluation experiments.

3.1 Enrollment histories and grades
A student’s transcript is classically a report containing the
student’s histories of courses taken and the grade achieved
in each. Enterprise database systems often store raw forms
of these data. It has become more common for institutions
to not only store these data in relational form but for their
internal offices of institutional analytics to have ready access
to them. As the fields of EDM and learning analytics have
grown, these data have become more available to faculty to
aid scholarly research. We used an anonymised enrollments
and grades dataset containing student enrollment histories
at a large public university, UC Berkeley, collected from Fall
2008 through Fall 2017. The dataset consists of per-semester
(i.e., Fall, Spring, and Summer) class enrollments for 164,196
students (both undergraduates and graduates) with a total
of 4.8 million class enrollments. A class enrollment record
in the data indicates that the student was still enrolled in
the class at the end of the semester. The action of drop-

ping a class is not contained in these data. The median
number of classes enrolled by a student in a semester was
four. There were 9,478 unique lecture courses from 214 de-
partments hosted in 17 different Divisions of 6 different Col-
leges. Course meta-information was also included in these
data and contained course number, department name, class
instructor(s), and room max capacity. In this paper, we only
consider lecture courses with at least 20 enrollments total
over the 9-year period, resulting in 7,487 courses. Although
courses can be categorized as undergraduate courses and
graduate courses, undergraduates are allowed to enroll in
many of the graduate courses. Enrollment data were sourced
from the campus’ enterprise data warehouse.

3.2 Course catalog descriptions
A paper catalog use to be the primary way in which students
could browse all the course offerings at an institution. For-
tunately, this has been superseded by online catalogs, most
of which are searchable. The catalog contains course num-
bers, their hosting department, and typically a paragraph
or type description of the course. Our dataset contains the
most recent catalog description of every course in our en-
rollment histories. The average catalog description length
was 325 words with 489 courses having exceptionally short
descriptions of 10 words or fewer. We sourced these descrip-
tions from the campus Office of the Registrar official API for
Course information. These descriptions were pre-processed
by (1) removing generic, often-seen sentences across descrip-
tions (2) removing stop words (3) removing punctuation,
and (4) word lemmatization and stemming.

3.3 Course syllabi from the Learning Manage-
ment System

A course syllabus is a detailed, chronological list of subjects
and assignments that a course will cover, often with other
logistical information about course meeting place and time
and grading policies. While the syllabus is perhaps an ideal
source of information to utilize for content-based represen-
tation of a course, it has been an elusive source to conduct
research on. This is because few institutions mandate that
instructors make their syllabi public and therefore it is un-
common to have syllabi centrally stored by the institution to
subsequently make available to researchers. An additional
barrier to research availability is that many institutions view
a syllabus as an instructor’s intellectual property (IP), and
therefore not sharable in original form without permission.
Our study introduces syllabus data into contemporary pre-
dictive models and tasks, but with a caveat that maintains
instructor control over the original intellectual property.

The university from which our syllabus data come from con-
siders syllabi to be instructor IP and does not collect them
centrally. However, a common place in which instructors
often place their syllabi is the ”Syllabus” page of the cam-
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pus Learning Management System (LMS). We worked with
the campus technology services organization in charge of
the LMS to extract all text from the Syllabus pages of all
courses. Sometimes this page would contain only a link to
the pdf of a syllabus, in which case that link was down-
loaded and parsed to text. To abide by the IP restrictions
around course syllabi and respect instructor ownership of
them, a workaround was arranged. Only the technology ser-
vices would have access to the cleanly parsed data from the
LMS. They would then pre-process the syllabus themselves,
similar to how we pre-processed catalog descriptions, pars-
ing out html, converting it into bag-of-words (BOW) form.
This form would thereby make the syllabus unusable as an
instructional object but potentially usable by an algorithm
attempting to extract information for institutional predic-
tion tasks. It was also agreed that the BOW we received
would not be made public and these data could be revoked
at any time. There were 3,645 unique courses that contained
HTML on the LMS Syllabus page, not including a link to
a file. There were 2,712 courses that contained a link to a
file, with some courses having both. The total number of
courses with some amount of syllabus data was 4,017 with
a combined vocabulary of 17,194 unique words.

4. REPRESENTATION MODELS
We choose four approaches of increasing complexity for rep-
resenting courses. These four reflect the most common paradigms
of modeling found in our literature review. The simplest is
a content-based bag-of-words representation of the course.
The BOW approach could be applied to the catalog descrip-
tion or syllabus of a course, where available. Next is the use
of a recently published variant on Course2vec called multi-
factor Course2vec, which applies a skip-gram to sequences of
course enrollments. In addition to embedding courses, mul-
tifactor Course2vec also embeds the instructor of the course
and the course’s department, both presented to the model
in the form of a one-hot encoding. Multifactor Course2vec
has been shown to perform better on course similarity tasks
than the original Course2vec [33], in theory because it sep-
arates out factors, such as instructor and department, al-
lowing the course embedding to more purely represent the
content. Long Short-Term Memory models are the third
model used to embed courses, followed by a recently intro-
duced network embedding technique.

A summary of the approaches used is visually illustrated in
Figure 2. The various types of information these methods
leveraged are summarized in Table 2.

Table 2: Summary of representative learning meth-
ods for courses
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bag-of-words ✓ ✓ static
multi-c2v ✓ ✓ dynamic

LSTM ✓ dynamic
sc-AMHEN ✓ ✓ static

4.1 Bag-of-words
The basic representation mode of bag-of-words was proposed
by information retrieval researchers for text corpora. It is a
model that reduces each document in a corpus to a vector of
real numbers, each of which represents a term, or vocabulary
weight. The term weight can be term frequency, a binary
value with 1 indicating that the term occurred in the docu-
ment and 0 indicating that it did not, or a tf-idf scheme[7].
There are two sources of texts that can represent the con-
tent of courses: the course catalog descriptions and course
syllabi.

4.2 Multifactor Course2vec
The Course2vec model [32] was proposed to learn distributed
representations of courses from students’ enrollment records
throughout semesters by using a notion of an enrollment se-
quence as a “sentence” and courses within the sequence as
“words”, borrowing terminology from the natural language
domain. For each student, their chronological course enroll-
ment sequence is produced by first sorting by semester then
randomly serializing within-semester course order. Each
course enrollment sequence is then trained on like a sentence
using a skip-gram model.

More features of courses (e.g., course instructor and de-
partment) can be added to the input of the multifactor
Course2vec model to enhance the classifier and its repre-
sentations. The model learns both course and added feature
representations by maximizing the objective function over
all the students’ enrollment sequences and the features of
courses, defined as follows.∑

s∈S

∑
ci∈s

∑
−w<j<w,j ̸=0

logp(ci+j |ci, fi1, fi2, ..., fih) (1)

Probability p(ci+j |ci, fi1, fi2, ..., fih) of observing a neigh-
boring course ci+j in window size w given the current course
ci and its features fi1, fi2, ..., fih (e.g., instructors, depart-
ment) can also be defined via the softmax function,

p(ci+j |ci, fi1, fi2, ..., fih) =
exp(aT

i v
′
i+j)∑n

k=1 exp(a
T
i v

′
k)

(2)

ai = vi +

h∑
j=1

Wnj×vfij (3)

where ac is the vector sum of input course vector representa-
tion vc and all the features vector representations of course
c, fij is the multi-hot input of the j-th feature of course i,
and Wnj×v is the weight matrix for feature j. So by mul-
tiplying Wnj×v and fij , it gets the sum of feature vector
representations of the i-th course. The illustration of the
model is shown in the multi-course part of Figure 2. vi is
the course representation of course i learned from the model
that is used in various down-stream course prediction tasks.

4.3 LSTM-learned Representations
In previous work [32], an LSTM was designed to recommend
courses for students to take in the next semester, based on
their enrollment histories. The input of the model in each
time slice is a multi-hot vector representing the courses taken
in the corresponding semester. The weights of the input
Wf , Wi, Wo, and Wc learned by the LSTM transferred the
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Figure 1: Illustration of the Attributed Multiplex
HEterogeneous Network (AMHEN) of Students and
Courses.

multi-hot input to the forget gate, input gate, output gate,
and the cell in the LSTM cell, respectively. These four sets
of weights are combined to form representations of courses
that can be used in down-stream prediction tasks.

4.4 Attributed Multiplex Heterogeneous Net-
work Embeddings

Network representation learning (i.e., network embedding),
is a promising method to project nodes in a network onto a
low-dimensional continuous space while preserving network
structure and inherent properties. In terms of the network
topology (homogeneous or heterogeneous) and attributed
property (with or without attributes), six different types of
networks can be categorized, i.e., HOmogeneous Network
(HON) [34], Attributed HOmogeneous Network (AHON)
[40], HEterogeneous Network (HEN) [9], Attributed HEt-
erogeneous Network (AHEN) [5], Multiplex HEterogeneous
Network (MHEN) [24], and Attributed Multiplex HEtero-
geneous Network (AMHEN) [4]. In the university setting,
students and courses can be mapped into a large heteroge-
neous network, where students and courses are two types of
nodes connected by students’ enrollments in courses. The
proximities between students and courses vary based on the
grades (e.g., A, B, C, D, etc.) students received for courses,
yielding the network with multiple views, i.e., multiplex het-
erogeneous network. Furthermore, if we incorporate the
attributes of students and nodes (e.g., course catalog de-
scriptions), the network will turn to an Attributed Multiplex
HEterogeneous Network (AMHEN), which is illustrated in
Figure 1. Because students may receive different grades for
the courses they enrolled, we consider different grades as
different edge types between students and courses.

Definition 1. (Attributed Multiplex Heterogeneous Net-
work): An attributed multiplex heterogeneous network is a
network G = (V, E ,A), E = ∪r∈R Er,where Er consists of
all edges with edge type r ∈ R, and |R| > 1. We separate
the network for every edge type r ∈ R as Gr = (V, Er,A).
Each node vi ∈ V is associated with some types of feature
vectors. A = {xi|vi ∈ V} is the set of node features for all
nodes, where xi is the associated node feature of node vi.

In the student-course attributed multiplex heterogeneous
network we described above, V = (C,S), where each node
c ∈ C represents a course in the course set C and each node
s ∈ S represents a student in the student set S. R refers
to all the edge types in the student-course attributed mul-
tiplex heterogeneous network, i.e., grade types. As students
have enrollment and grade histories of multiple courses, we
consider student embeddings as a state of their course knowl-
edge. Different grade types mirror different levels of course
knowledge, thus should be represented as different embed-
dings.

Given the above definitions and descriptions, we can for-
mally define our problem for representation learning on the
student-course AMHEN.

Problem 1. (Student-Course AMHEN Embedding). Given
a Student-Course AMHEN G = (C,S, E ,A), the problem of
Student-Course AMHEN embedding is to give a unified low-
dimensional space representation of each student node s ∈ S
and each course node c ∈ C on every grade type r.The goal
is to find a function g : S → Rd and a function fr : C → Rd

for every grade (edge) type r, where d ≪ |C| (d ≪ |S|).

4.4.1 Student and Course Representations
In this section, we detail our adaptation of the AMHEN
framework[4] to the student-course scenario to learn graph-
based student and course representations. We split the over-
all course embedding on each course type r into three parts:
base embedding bc, grade embedding g, and attribute em-
bedding u, and split the overall student embedding into two
parts: base embedding bs, and individual embedding p.

The base embedding of course node ci, i.e., bci, is shared
between different grade types. We define bci as a parame-
terized function of ci’s attributes xi ∈ Rx as:

bci = h(xi) (4)

where h is a transformation function, such as a multi-layer
perceptron. The attribute embedding of course node ci, i.e,
ui, is defined as:

ui = DTxi (5)

Given that in the Student-Course AMHEN, the neighbors of
a course are all students while the neighbors of students are

all courses, the k-th level1 of grade embedding g
(k)
ir ∈ Rd,

(1 ≤ k ≤ K) of course node ci on grade type r is aggregated
from individual embeddings of students that are ci’s neigh-
bors, which means these students all received grade type r
for course ci.

g
(k)
ir = mean({p(k−1)

j , ∀pj ∈ Ni}) (6)

Similarly, the k-th level of individual embedding p
(k)
i ∈ Rd,

(1 ≤ k ≤ K) of a student node si is aggregated from grade
embeddings of courses that are si’s neighbors, which demon-
strates a student’s representation is derived from the grade
histories of his/her enrolled courses.

p
(k)
i = mean({g(k−1)

jr , ∀cj ∈ Nir}) (7)

1By level we mean iteration, i.e., the embedding is updated
after each parameters update process.

Proceedings of The 13th International Conference on Educational Data Mining (EDM 2020) 118



Figure 2: Visual summary of representation learning methods

We denote the k-th level grade embedding g
(k)
ir as grade

embedding gir, and concatenate all the grade embeddings
for course node ci as Gi ∈ Rd×m, where d is the dimension
of grade embeddings and m is the number of grade types.

Gi = (gi1, gi2, ..., gim) (8)

We use self-attention mechanism[23] to compute the coeffi-
cients air ∈ Rm of linear combination of vectors in Gi on
edge type r as:

air = softmax(wT
r tanh(WrGi))

T (9)

where wr ∈ Rda and Wr ∈ Rda×d are trainable parameters
for grade type r. Thus, the overall embedding of course node
ci for grade type r is:

cir = αch(xi) +MT
r Giair + βcD

Txi (10)

where Mr ∈ Rd×n and D ∈ Rx×n are trainable transfor-
mation matrix. αc and βc are two coefficients adjusting the
weights of the three embeddings of courses, which can also
be trainable.

The overall embedding of student node si is:

si = αsbs +NTpi (11)

where αs is a trainable coefficient adjusting the weights of
the two embeddings of students, and N ∈ Rd×n is a train-
able transformation matrix for the individual embeddings of
students.

4.4.2 Model Optimization
Having the student and course representations constructed,
we discuss how to generate the training data and learn the

student and course embeddings. We first separate the whole
network by edge(grade) type, then given a view (grade type)
r of the network, i.e., Gr = (C,S, Er,A), we use meta-path-
based random walk[9] to generate node sequences. There are
two meta-path schema in the student-course AMHEN, i.e.,
student − course − student or course − student − course.
Finally, we apply a skip-gram [27, 28] over the node se-
quences to learn embeddings. The meta-path-based random
walk strategy ensures that the semantic relationships be-
tween student nodes and course nodes with different grade
types can be properly incorporated into the skip-gram model
[9]. For a training pair (ci, sj) with grade type r, our objec-
tive is to maximize the probability:

P (sj |ci, r) =
exp(cTirs

′
j)∑

sk∈S exp(cTirs
′
k)

(12)

where s′
k is the context embedding of student node sk. For

a training pair (si, cj) with grade type r, our objective is to
maximize the probability:

P (cj |si, r) =
exp(sT

i c
′
jr)∑

ck∈C exp(sT
i c

′
kr)

(13)

where c′kr is the context embedding of course node ck with
grade type r. Finally, we use heterogeneous negative sam-
pling to approximate the objective function −logP (sj |ci, r)
for node pair (ci, sj) as

loss(ci, sj , r) = −logσ(cTirs
′
j)−

L∑
l=1

Esk∼P (sk)[logσ(−cTirs
′
k))]

(14)
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and the objective function−logP (cj |si, r) for node pair (si, cj)
as:

loss(si, cj , r) = −logσ(sT
i c

′
jr)−

L∑
l=1

Eck∼P (ck)[logσ(−sT
i c

′
kr))]

(15)

Here we define P (sk) =
f(sk)

3/4∑|S|
i=1 f(si)3/4

and P (ck) =
f(ck)

3/4∑|C|
i=1 f(ci)3/4

according to the Skip-gram model[27], where f refers to the
frequency of the node in each node type.

After optimizing the model with all the parameters learned,
we reform the overall embedding for course i by concatenat-
ing its embeddings of all grade types.

ci = (cTi1, c
T
i2, ..., c

T
im)T (16)

5. TASKS
In this section, we describe five down-stream institutionally
relevant tasks that can be performed by using the course
representations constructed by the model approaches intro-
duced in Section 4.

5.1 Course Similarity
An essential way to check the quality and fidelity of the
course representations introduced in section 4 is to test whether
they contain important features of courses that could dif-
ferentiate between similar and dissimilar courses. To this
end, an equivalency validation set of 1,351 course credit-
equivalency pairs maintained by the Office of the Registrar
were used for similarity based ground truth. A course is
paired with another course in this set if a student can only
receive credit for taking one of the courses at the university.
For example, an honors and non-honors version of the same
course will appear as a pair because faculty have deemed
that there is too much overlapping material between the
two for a student to receive credit for both.

To evaluate different course representations on the course
equivalency validation set, we fixed the first course in each
pair and ranked all the other courses according to their co-
sine similarity to the first course in descending order. We
then noted the rank of the expected second course in the pair
and describe the performance of each model on all validation
pairs in terms of Mean Rank, Median Rank and Recall@10.

5.2 Enrollment Prediction
Enrollment prediction involves predicting the courses a stu-
dent will enroll in, but not the grade they will receive. For
this reason, it is considered a model of behavior, rather than
an assessment model. The task could be potentially useful
for the purpose of providing a normative course taking signal
that could be used to provide a personalized sorting of course
results (e.g., showing the courses a student is most likely to
take that satisfy a remaining requirement) [32]. The input
of the model in each time slice is a multi-hot vector rep-
resenting the courses taken in the corresponding semester.
However, the multi-hot representation has a large dimension
of total number of courses and may not encode course fea-
tures apparent in text descriptions of the course or graph-
based methods. Therefore, we also evaluate substituting
the multi-hot course input with the sum of pre-trained low-
dimensional representations from other models, illustrated

in Figure 3. Performance on this task is reported in terms
of Recall@ 10 and Mean Reciprocal Rank@10 (MRR@10).
MRR evaluates recommender system models that produce
a list of ranked items for queries. The reciprocal rank is the
“multiplicative inverse” of the rank of the first correct item.
MRR is defined as MRR = 1

|Q|
∑Q

i=1
1

ranki
, where ranki rep-

resents the rank of the first correct recommended item for
query i. For calculating MRR@10, the only difference is
ranki is reset to 0 if ranki > 10.

Figure 3: Illustration of the LSTM-based next-
course prediction

5.3 Grade Prediction
Grade prediction is the basis for an assessment model that
could aid adaptive sequencing of courses to achieve a partic-
ular goal. In previous work[21], a modified LSTM was de-
signed to trace students’ course knowledge, which predicted
students’ grades on enrolled courses in each semester. The
model gives students the ability to choose their grade goal (A
or B) or Pass/No-pass. A masked loss function was designed
to enable the output to predict letter grade and Pass/No-
pass independently. Two cut-offs (A or B) were also set to
separate the letter grades into two levels (e.g., higher and
lower than an ’A’). The input of the LSTM grade predic-
tion model is also a multi-hot vector with the position of
grades students received for enrolled courses as 1 and other
positions as 0. Because there are seven grade types for each
course, the dimensions of the model input in each time slice
is the number of courses multiplied by seven. As an alter-
native to the multi-hot input, we also evaluate the perfor-
mance of the model using the course grade representations
learned from the student-course AMHEN model in Section
4.4, which is illustrated in Figure 4, where gi represents the
grades of courses taken in semester i and ci represents the
courses taken in semester i. ci+1 is concatenated with gi to
incorporate the impact of the co-enrolling effect of courses
in the predicted semester on grade prediction.

In addition, the student-course AMHEN model can also pre-
dict the grades of students by calculating the cosine similar-
ities between student embeddings and course embeddings,
and then predicting the grades by picking up the grade of
each course that is most similar to the target student.

g(si, cj) = argmax
r

cos(si, cjr) (17)
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Figure 4: Illustration of the LSTM-based grade pre-
diction

For the model without grade cut-off, there are seven grade
types in the student-course AMHEN model representing A,
B, C, D, F, Pass, and No-pass. A prediction is considered
correct only if it is exactly the grade a student received in
the data. For the models with grade cut-off (A or B), we
group the letter grades not lower than the cut-off as a grade
type, and the letter grades lower than the cut-off as another
grade type in the student-course AMHEN model.

Both the enrollment prediction and grade prediction models
were trained using a temporal train/test split, with Fall 2008
through Fall 2015 semesters serving as the training set and
Spring 2016 as the testing semester.

5.4 Prerequisite prediction
Prerequisite course information is essential to encourage or
mandate that students have the necessary foundational ex-
perience to be able to learn and succeed in the advanced
stages of their degree. We used a set of 2,300 prerequi-
site course pairs, provided by the UC Berkeley Office of the
Registrar, which contains 1,215 target courses, as a source
of ground truth to test whether the grade prediction model
encodes such prerequisite relationships between courses.

Prerequisite relationships between courses can be inferred
by inferencing an LSTM-based grade prediction model as
described in [21] and illustrated in Figure 5. Note that, for
this evaluation, only one time slice input of the binary-grade
(A or lower than A) prediction trained LSTM is needed. We
iterate over all the courses with only one-hot embedded in
the ‘A’ position for that course, and feed the input, which
is a concatenation of a target course and grade A of the
input course, to the LSTM. During the iterations, the in-
put course that boosted the probability of the ‘A’ position
of target course to the largest ten values will be selected as
candidate prerequisite courses for the target course. This ap-
proach is similar to the prerequisite skill inference conducted
with DKT [35], but with a much larger vocabulary and with
ground truth prerequisite structure to validate against. As
with the other tasks, we also evaluate replacing the input
of this model with representations from the student-course
AMHEN graph-embedding approach.

A simple multinomial logistic regression can alternatively be

used to predict prerequisites courses using any arbitrary vec-
tor representation of a course. The input of the multinomial
logistic regression during training is the vector representa-
tion of the target course, and the output is a multi-hot of
the prerequisite courses for the target course. During test-
ing, the output is a probability distribution across all courses
where the most probable courses can be taken as the pre-
requisite predictions of the regression.

We classified all the models for the prerequisite course pre-
diction task into two types, supervised and unsupervised,
based on whether the model was learned using the official
prerequisite course pairs. For the supervised models (i.e.,
using the regression), we applied 10-fold cross-validation to
the 2,300 prerequisite course pairs. For the unsupervised
models (i.e., LSTM-based inferences), described in Section
5.4, the LSTM with standard course multi-hots as input
and with graph-based embeddings as input was trained first
on the supervised task of predicting course grades, and was
then inferenced in an unsupervised manor (i.e., not using
any prerequisite ground truth), to predict course prerequi-
sites.

Figure 5: Prerequisite course prediction using
LSTM-based grade prediction model[21]

5.5 Average Enrollment Prediction
Do the representations of courses created by various mod-
eling techniques encode course popularity information? To
answer this we test the course representations’ ability to
predict the average enrollment size of each course. The data
and models that perform well in this test may be indicative
of the data and modeling paradigms that would work well
for temporal versions of this model that could anticipate in-
creases in course demand and allow institutions to better
plan room and teaching staff allocations.

In order to check whether the different types of course em-
beddings encode information predictive of the number of
enrollments, we use a simple a multi-layer perceptron to pre-
dict average enrollment per course using the different types
of course embeddings introduced in section 4 as candidate
inputs. RMSE is adopted as the error metric.

6. EXPERIMENT RESULTS
We begin this section by reporting a summary of only the
best performing model and data source pairs used to con-
struct the input representations for each of our five down-
stream model predictions tasks. This summarized set of best
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Table 3: Evaluation of course representation models on various prediction tasks

Representation
created by

Course similarity
prediction

Enrollment
prediction

Grade
prediction

Prerequisite
prediction

Avg-
enroll-
predict

Model
Data
Source(s)

Mean/ Me-
dian Rank

Recall@10 Recall@10 MRR@10 Accuracy Recall@10 Target RMSE

bag-of-words catalog 602/6 [33] 0.5370[33] 0.3154 0.5216 - 0.5152 0.5938 42.4781

bag-of-words syllabus 329/19 0.4270 0.3744 0.5103 - 0.5658 0.6352 48.8965

multi-c2v
enrollments,
course meta-
information

224/15[33] 0.4485[33] 0.3791 0.5576 - 0.6957 0.7733 42.4780

LSTM
(multi-hot)

enrollments 584/58 0.2924 0.3967 0.5885 0.6952 0.3048[21] 0.4486[21] 51.4140

sc-AMHEN
enrollments,
grades,
catalog

288/11 0.4767 0.3882 0.5625 0.7008 0.7192 0.8000 52.3370

results are shown in Table 3. On the task of course sim-
ilarity, a simple bag-of-words representation of the course
catalog description performs best in terms of median rank
and Recall @ 10 on our credit-equivalency pairs validation
set. Enrollment histories provide the second best perform-
ing score using sc-AMHEN network-based embedding, fol-
lowed by multi-c2v. Scoring similarly to multi-c2v was a
simple BOW of the lms-syllabus data. On the task of pre-
dicting which courses a student will take next (enrollment
prediction), an LSTM with a multi-hot input representa-
tion of courses taken in each semester provided the best
performance in terms of both metrics. In this task, using
pre-trained embeddings from the network-based or multi-
c2v approach worked less well than multi-hot, followed by
using the content-based representations as inputs, which
performed worst. In grade prediction, the network-based
method performed slightly better than the previous state-
of-the-art LSTM. On the task of prerequisite prediction, the
network-based approach performed best in recovering the
ground-truth prerequisite relationships found in our insti-
tutional data. The multi-c2v approach was not far behind.
The content-based and LSTM course representations did not
perform nearly as well on this task. Finally, on the task of
predicting the average enrollment of a course, multi-c2v pro-
vided the lowest RMSE, but with an almost identical score
achieved by simple BOW of the course catalog description.

In the subsequent sections we provide a more detailed break-
down of performance of all model and data combinations on
the tasks of course similarity, grade prediction, and prerequi-
site prediction. Results of enrollment prediction and average
enrollment prediction are already shown in full in Table 3.

6.1 Course Similarity
The evaluation results on the equivalency validation set of
1,351 course credit-equivalency pairs are shown in Table 4.
The bag-of-words representations (Tf-idf) generated from
course catalog descriptions achieved better median rank and
recall@10 than those generated from the course syllabus
data. However, the mean rank of the catalog-based rep-
resentations is the worst among all the models, which sug-
gests there are many outliers where literal semantic simi-
larity (bag-of-words) is very poor at identifying equivalent
pairs. Concatenations of the bag-of-words based methods
and course2vec-based method increased the evaluation met-

Table 4: Course similarity validation of all the
course representations

Model
Mean/Median

Rank
Recall
@10

catalog 602/6 0.5372
syllabus 329/19 0.4270

course2vec (c2v) 244/21 0.3839
multi-c2v (mc2v) 224/15 0.4485
catalog+mc2v 132/3 0.6435
syllabus+mc2v 109/6 0.5798

catalog+syllabus+mc2v 79/3 0.6705
catalog+syllabus+mc2v

(PCA dim: 300)
177/3 0.6544

LSTM 584/58 0.2924
sc-AMHEN(u) 288/11 0.4767
sc-AMHEN(c) 330/27 0.3603

rics, especially when the bag-of-words representations of cat-
alog and syllabus were combined with the multi-factor course2vec
representations, reaching a mean/median rank of 79/3 and
recall@10 of 0.6705, the best among all the models. A Prin-
cipal Component Analysis (PCA) transformation of the con-
catenated course vectors from 10,000 to 300 did not diminish
the median rank metric, but slightly negatively affected av-
erage rank and recall. The course representations learned
from the next-course prediction LSTM performed the worst
among all the models. Course attribute embeddings sourced
from the student-course AMHEN (sc-AMHEN) model, per-
formed second best among all single representation models.

6.2 Grade Prediction
The accuracy of the grade predictions generated by the pure
student-course AMHENmodel (sc-AMHEN(s, c)), the LSTM
model with mult-hot as input (LSTM(multi-hot)), and the
LSTM model with course embeddings with different grade
types (LSTM(u, c)) are listed in Table 5. Among the three
models, the pure student-course AMHEN model is a kind
of static model learned from students’ enrollment data with
grades and course catalog descriptions, while the two LSTM-
based models are dynamic models taking into consideration
not only the student enrollment data with grades, but also
the sequential informaion (semester order) of the grades of
enrolled courses. The grade prediction results show that
the graph model, though static, could map the knowledge
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Table 5: Grade prediction evaluation (accuracy)

Model Type
Cut-
off

Letter
grade

Pass/
No-pass

All

sc-AMHEN
(s, c)

static - 0.5441 0.7972 0.5976

LSTM
(multi-hot)

dynamic - 0.6382 0.9079 0.6952

LSTM (u, c) dynamic - 0.6418 0.9209 0.7008
sc-AMHEN

(s, c)
static A 0.5526 0.7791 0.6004

LSTM
(multi-hot)

dynamic A 0.7523 0.8581 0.7633

LSTM (u, c) dynamic A 0.7571 0.9135 0.7902
sc-AMHEN

(s, c)
static B 0.8299 0.8205 0.8279

LSTM
(multi-hot)

dynamic B 0.8805 0.9178 0.8884

LSTM (u, c) dynamic B 0.8817 0.9185 0.8895

levels of students on the features of courses with different
grade types to a certain degree, resulting in prediction accu-
racies higher than 0.5 for all grade types and higher than 0.6
and 0.8 for binary grades (“not lower than cut-off”v.s.“lower
than cut-off”, Pass v.s. No-pass) on average. Furthermore,
the sequential information of students’ grades by semesters
exhibited substantial importance as the prediction accuracy
of the two LSTM-based models manifested superiortiy to
the static student-course AMHEN model by a significant
margin. Moreover, the course embeddings with different
grade types learned from the student-course AMHEN model
helped increase the accuracy of grade prediction over the
multi-hot vectors as the input of the LSTM. The potential
reasons could be the course embeddings with different grade
types captured the knowledge relations among grades of a
course and the relations among different courses, thus could
represent the knowledge of students more accurately than
multi-hot, which could not encode any knowledge relations
among grades. Although the positive impact of incorporat-
ing grade embeddings on grade prediction (improvement at
the 0.01 level) are not so salient as the advantage of bringing
in sequential information (improvement at the 0.1 level), it is
manifested in all the evaluations with different grade types.

6.3 Prerequisite prediction
The evaluation results of prerequisite course prediction are
shown in Table 6. The supervised models performed dramat-

Table 6: Prerequisite course prediction

Model Supervised
Pairs

(Recall@10)
Target
course

LSTM(one-hot) 7 0.3048 0.4486
LSTM(u, c) 7 0.2423 0.3580

catalog ✓ 0.5152 0.5938
syllabus ✓ 0.5658 0.6352
mc2v ✓ 0.6957 0.7733

sc-AMHEN(u, c) ✓ 0.7192 0.8000

ically better in reconstructing the prerequisite pairs. Among
all types of course representations, the course embeddings
and grade embeddings learned from the student-course AMHEN
performed the best, reaching 71.92% of the prerequisite pairs

correctly predicted and 80% of all the target courses with
at least one of their prerequisite course correctly predicted.
For unsupervised models, we found one-hot representation of
courses performed better than course and grade embeddings
in the prerequisite course inference framework described in
Section 5.4.

7. CONCLUSIONS
In this paper, we evaluated the utility of two content-sources
of data about courses, catalog descriptions and syllabi, as
well as enrollment histories and grades. We paired these
sources with four different representations produced by sim-
ple bag-of-words, multifactor Course2vec, LSTM, and network-
based embedding. We compared the performance of these
pairings on five prediction tasks, course similarity, enroll-
ment prediction, grade prediction, prerequisite prediction,
and average enrollment prediction.

On the topic of the utility of syllabus data, which has not
been evaluated before, we found that it showed benefit over
catalog description data only in inferring prerequisite rela-
tionships (Recall of 0.5658 vs 0.5152), perhaps due to syllabi
being the finer-grained source of content information about a
course. In terms of course similarity signal, catalog descrip-
tion was markedly better than syllabus (Recall of 0.5372 vs
0.427) and our results indicate that catalog description, syl-
labus, and enrollment histories all bring some level of com-
plementary information as the combination of all three per-
formed better than any one or two combined. Enrollment
data was used in the best scoring model in four of the five
tasks, with only the best performing course similarity task
model not utilizing enrollments. The nascent network-based
approach performed well on all tasks, and was the top model
in grade prediction and prerequisite prediction.

To conclude: (1) syllabus data is worth the effort to col-
lect compared to catalog description for prerequisite predic-
tion and (2) complements the catalog description and enroll-
ment data on the course similarity task, (3) for prerequisite
learning, supervised approaches based on embeddings per-
form much better than inferencing a pre-trained assessment
model, (4) multifactor Course2vec often performs close to
the more complex network-based approach on all tasks and
(5) seeding the LSTM with course representations from the
other models did not improve next-course prediction per-
formance, while seeding with course grade representations
from the student-course AMHEN model provided a small
improvement in the grade prediction task.

8. LIMITATIONS AND FUTURE WORK
Our analyses were limited to data from a single large pub-
lic institution in the US. Future work will need to evaluate
multiple institutions of varying sizes, student demographics,
and course taking policies in order to examine the generaliz-
ability of these approaches. In terms of models, we focused
on simple text-based approaches and more complex neural
models, both well established and nascent. Classical models
of intermediary complexity were not evaluated.

We included tasks that have been common in EDM papers
involving enrollment data; however, other institutional tasks
exist that could be evaluated to produce an even more com-
prehensive analysis. These tasks include course preparation
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recommendation [21, 20], degree or course attrition predic-
tion, and future course demand forecasting.

Syllabi in their original form could be evaluated, instead
of in bag-of-words form, in order to investigate if the posi-
tionality of words in the syllabi offered any additional pre-
dictive utility. Lastly, learning management system click-
stream data, as well as content information in addition to
the syllabus, could be leveraged to enhance both content-
based and collaborative-based course representations. This
combination of different modalities and scales of data is an
identified open challenge for the field [14].
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